A SEPARATION OF CARDINALS

G. N. Miliaras

American University of Athens Andrianiou 9. P. Psychico Athens Greece e-mail: gmiliara@yahoo.gr

Abstract

In this paper, we find a set theoretic condition of separating regular from singular cardinals.

1. Introduction

Ordinals and cardinals are two of the most fundamental notions in set theory, and of the most useful tools in topology. We have seen separation of cardinals via topological properties, i.e., certain topological properties are valid only if the cardinals used are regular ([1, 3]), or only if the cardinals used are singular ([2, 4]).

In this paper, we present a separation of cardinals independent of any other area of mathematics but set theory itself.

@ 2011 Scientific Advances Publishers

²⁰¹⁰ Mathematics Subject Classification: 03E10.

Keywords and phrases: set, cardinal, regular, singular, cofinality of a cardinal, cover. Received November 16, 2011

G. N. MILIARAS

2. Main Results

In this section, at first, we present two lemmas, which are necessary for our main results.

Lemma 2.1. Let X be a set and U_* be a cover of subsets of X with $|U_*| = k$, such that there is no subcover of U_* with cardinality less than k. Then, there is a subset S of X with |S| = cf(k) that cannot be covered by less than cf(k) elements of U_* .

Proof. Let $U_* = \{U_{\gamma} | \gamma \in k\}$ and $\lambda = cf(k)$, choose ordinals $k_{\beta}, \beta < \lambda$ with $\sup\{k_{\beta}\} = k$. For every $\beta < \lambda$, let $V_{\beta} = \bigcup\{U_{\gamma} | \gamma < k_{\beta}\}$ and $V_* = \{V_{\beta} | \beta < \lambda\}$, then V_* is a cover of X with $|V_*| = \lambda = cf(k)$, with no subcover of cardinality less than λ . For every $\beta < \lambda$, choose a point $x_{\beta} \in V_{\beta+1} \setminus V_{\beta}$, then the set of points $\{x_{\beta} | \beta < \lambda\}$ has cardinality λ , it cannot be covered by less than λ elements of V_* , and therefore, it cannot be covered by less than λ elements of U_* .

The proof of the lemma is complete.

The following lemma is an immediate consequence of the above:

Lemma 2.2. Let X be a set and U_* be a cover of subsets of X with $|U_*| = k$, where k is a regular cardinal, and there is no subcover of U_* with cardinality less than k. Then, there is a subset S of X with |S| = k that cannot be covered by less than k elements of U_* .

Remark 2.1. The above lemma is not valid for singular cardinals, as we shall see in the following example:

Example 2.1. Let k be a singular cardinal with $cf(k) = \lambda$, choose regular cardinals k_{β} , $\beta < \lambda$ with sup $\{k_{\beta}\} = k$. Consider the products

$$X_{\delta} = \prod_{\delta < \beta < \lambda} k_{\beta},$$

and the disjoint union

$$X = \coprod_{\delta < \lambda} X_{\delta}.$$

Let [0, a) be an initial segment of a cardinal k_{γ} , consider the sets of the form

These sets form a cover of X, the cardinality of this cover is clearly k, and has no subcover of cardinality less than k, since each component X_{δ} cannot be covered by less than k_{δ} elements of the cover. Let S be a subset of X with |S| = k.

Let T be the subset of S contained in some $\prod_{\delta < \beta < \lambda} k_{\beta}$, assume the "worst" case |T| = k, let us express T in the form $T = \bigcup \{T_{\beta} | \beta < \lambda\}$, if $\beta < \gamma$, then $T_{\beta} \subset T_{\gamma}$ and $|T_{\beta}| = k_{\beta}$. Then for any $T_{\beta''}$, there exists a cardinal $k_{\gamma'}$ such that $T_{\beta''}$ is contained in the set $\prod_{\delta < \beta < \lambda} k_{\beta} \times [0, k_{\gamma'}) \times \prod_{\gamma < \beta' < \lambda} k_{\beta'}$, since all k_{γ} 's are all regular, so T is contained in λ elements of the cover restricted to $\prod_{\delta < \beta < \lambda} k_{\beta}$, and since X has λ "components", S is

contained in λ elements of the cover.

Remark 2.2. So, we see that eventhough this space cannot be covered by less than k elements of the cover, any subset of this set, of cardinality k is covered by λ elements of the cover. The reason, we made such a

G. N. MILIARAS

complicated construction of the cover, is because someone might think that, perhaps given a cover U_* with $|U_*| = k$, it could be reduced to a cover that has a property similar to the one described in Lemma 2.2 for regular cardinals. The cover described in the example cannot be reduced to such a subcover.

Now, based on Lemma 2.2 and Example 2.1, we can state the theorem that separates cardinals.

Theorem 2.1. Let k be a cardinal, the followings are equivalent:

(i) k is regular.

(ii) For every set X with |X| > k, and for every cover U_* with $|U_*| = k$, which has no subcover of cardinality less than k, there exists a subset S of X with |S| = k, that cannot be covered by less than k elements of U_* .

We finish with the following observation:

Corollary 2.1. Let X be a set, U_* be a cover of X with $|U_*| = k$ singular, with no subcover of cardinality less than k. Assume that every subset S of X with |S| = k is covered by less than k elements of U_* . Then, there is a cardinal $\mu \ge cf(k), \mu < k$ such that every subset of X of cardinality k is covered by at most μ elements of U_* .

Proof. Let $\lambda = cf(k)$, choose cardinals k_{β} , $\beta < \lambda$ with $\sup\{k_{\beta}\} = k$. Assume that for every k_{β} , there exists a subset S_{β} of X with $|S_{\beta}| = k$ that cannot be covered by k_{β} elements of U_* , then $\bigcup\{S_{\beta}|\beta < \lambda\}$ is covered by k elements of U_* , that contradicts the hypothesis. Therefore, there exists a cardinal μ such that every subset of X of cardinality k is covered by at most μ elements of U_* . The fact $\mu \ge cf(k)$ follows from Lemma 2.1. The proof of the corollary is complete.

66

References

- P. S. Alexandroff and P. Urysohn, Memoire sur les espaces topologiques compacts, Verh. Koninkl. Akad. Wetensch. Amsterdam 14 (1929), 1-96.
- [2] G. Miliaras, Cardinal invariants and covering properties in topology, Thesis (Ph.D.)-Iowa State University (1988), 47.
- [3] G. Miliaras, A review in the generalized notion of compactness, Boll. Un. Mat. Ital. A(7)8 (1994), 263-270.
- [4] G. Miliaras and D. E. Sanderson, Complementary forms of $[\alpha, \beta]$ -compact, Topology Appl. 63 (1995), 1-19.

67